Ratio Test MC

14. The sum of the infinite geometric series
$$\frac{3}{2} + \frac{9}{16} + \frac{27}{128} + \frac{81}{1024} + \cdots$$
 is

(A) 1.60 (B) 2.35 (C) 2.40 (D) 2.45 (E) 2.50

6. What are all values of p for which $\int_{1}^{\infty} \frac{1}{x^{2p}} dx$ converges? A) p < -1 B) p > 0 C) $p > \frac{1}{2}$ D) p > 1 E) There are no values of p for which this integral converges

- 4. Consider the series $\sum_{n=1}^{\infty} \frac{e^n}{n!}$. If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?
- A) $\lim_{n \to \infty} \frac{e}{n!} < 1 \quad B$) $\lim_{n \to \infty} \frac{n!}{e} < 1 \quad C$) $\lim_{n \to \infty} \frac{n+1}{e} < 1$ D) $\lim_{n \to \infty} \frac{e}{n+1} < 1 \quad E$) $\lim_{n \to \infty} \frac{e}{(n+1)!} < 1$

12. Which of the following series converges for all real numbers of x?

A)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 B) $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ C) $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ D) $\sum_{n=1}^{\infty} \frac{e^n x^n}{n!}$ E) $\sum_{n=1}^{\infty} \frac{n! x^n}{e^n}$

15. What are all values of x for which the series $\sum_{n=1}^{\infty} \left(\frac{2}{x^2+1}\right)^n$ converges? A) -1 < x < 1 B) x > 1 only C) $x \ge 1$ only

E) x < -1 and x > 1 only F) $x \le -1$ and $x \ge 1$

- 79. Le f be a positive, continuous, decreasing function such that a_n = f(n). If ∑_{n=1}[∞] a_n converges to k, which of the following must be true?
 A) lim_{n→∞} a_n = k
 B) ∫₁ⁿ f(x)dx diverges
 C) ∫₁[∞] f(x)dx diverges
- $D) \int_{1}^{\infty} f(x) dx \text{ converges}$

$$E) \quad \int_{1}^{\infty} f(x) dx = k$$

82. If $\sum_{n=1}^{\infty} a_n$ diverges and $0 \le a_n \le b_n$ for all n, which of the following statements must be true? A) $\sum_{n=1}^{\infty} (-1)^n a_n$ converges B) $\sum_{n=1}^{\infty} (-1)^n b_n$ converges C) $\sum_{n=1}^{\infty} (-1)^n b_n$ diverges D) $\sum_{n=1}^{\infty} b_n$ converges E) $\sum_{n=1}^{\infty} b_n$ diverges 22. If $\lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^p}$ is finite, then which of the following must be true? (A) $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges (B) $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges (C) $\sum_{n=1}^{\infty} \frac{1}{n^{p-2}}$ converges

(D)
$$\sum_{n=1}^{\infty} \frac{1}{n^{p-1}}$$
 converges (E) $\sum_{n=1}^{\infty} \frac{1}{n^{p+1}}$ diverges

18. Which of the following series converge?

$$I. \sum_{n=1}^{\infty} \frac{n}{n+2} \qquad \text{II} \sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n} \qquad \text{III} \sum_{n=1}^{\infty} \frac{1}{n}$$
(A) None (B) II only (C) III only (D) I and II only (E) I and III only
What are all values of a fear which the carries $\sum_{n=1}^{\infty} \frac{(x+2)^n}{n}$ accuracy?

84. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$ converges?

(A)
$$-3 < x < -1$$
 (B) $-3 \le x < -1$ (C) $-3 \le x \le -1$ (D) $-1 \le x < 1$ (E) $-1 \le x \le 1$

20. What are all values of x for which the series
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n3^n}$$
 converges?

(A) $-3 \le x \le 3$ (B) -3 < x < 3 (C) $-1 < x \le 5$ (D) $-1 \le x \le 5$ (E) $-1 \le x < 5$

24. Which of the following series diverge?

$$I. \sum_{n=0}^{\infty} \frac{\sin 2}{\pi}$$
$$II. \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$
$$III. \sum_{n=1}^{\infty} \frac{e^n}{e^n + 1}$$

A) III onlyB) I and II onlyC) I and III onlyD) II and III onlyE) I, II, and III

22. What are all values of p for which the infinite series $\sum_{n=1}^{\infty} \frac{n}{n^p + 1}$ converges?

A)
$$p > 0$$
 B) $p \ge 1$ C) $p > 1$ D) $p \ge 2$ E) $p > 2$